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Time-dependent flows occur naturally as in pulsatile blood flow and in tidal estuaries 
and comprise many of the man-made flows of practical importance. A knowledge of 
the rate of mixing of a contaminant substance in such time-dependent flows is of 
paramount interest in, for example, the injection of a chemical substance in blood 
flow, the discharge of outfalls in estuaries, and the mutual contamination length of 
two feed fluids when switching from one feed line to another as part of a manufacturing 
process. This paper presents a study of contaminant spread in two specific and 
well-defined flows and provides a basis for the interpretation of contaminant mixing 
in the more complex flow situations that normally prevail. 

An extension of the probabilistic formulation of the streamwise dispersion of 
contaminant molecules given in Dewey & Sullivan (1982) is used to study time- 
dependent laminar flows between parallel plates and in tubes wherein the flows are 
homogeneous in the streamwise direction. The two flows considered in detail are 
oscillating flows and impulsively started flows. In  impulsively started flows i t  is shown 
that, although the basic dispersive mechanism acts in much the same way as 
described by Taylor (1953), the start-up effects on the dispersion can be quite 
prolonged and very significantly reduce the streamwise spread of contaminant over 
that which is observed in the fully developed flow. I n  oscillatory flows, unlike the 
situation presented by Taylor (1953) in which a diminished value of molecular 
diffusivity K increases the contaminant cloud axial growth rate in a tube of radius 
a ,  it  is found that optimal streamwise contaminant spread results from a value of K 

that depends upon kinematic viscosity 1’ and frequency o. The streamwise cloud- 
variance growth rate is explored over the full range of the two parameters y2 = w a 2 / K  

and A2 = wa2/2v for all time, and i t  is shown that a global maximum results when 
y x 271 and h FZ 2. 

1. Introduction 
Taylor (1953) showed that the dominant mechanism whereby a scalar contaminant 

cloud is spread out in the steady flow within a tube is dispersion - the interaction 
between the molecular diffusivity in the radial direction and the gradient of the axial 
component of the mean-flow velocity. Taylor showed that following a reasonably 
long period of time, t K / a 2  9 1, the dispersive contribution to the growth rate of the 
st,reamwise cloud variance cr2 is given by 

where IT is the average flow velocity. I t  is apparent from ( 1 )  that dv2/dt 4 0  as K + a), 
corresponding to each constituent cloud molecule moving at all times with velocity 
IT, and drr2/dt+ co as K + O ,  corresponding to each constituent cloud molecule 
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retaining its initial velocity for all time. By contrast, in an oscillating flow the change 
in cloud variance following one cycle when K + O  is zero, since the constituent 
molecules all return to their initial release positions, and will also be zero when k + CO, 

for tlhe same reason as for a steady flow. One then expects, for this rather different 
dispersion phenomenon, some optimal dispersion effect for a value of K intermediate 
to these extreme values. 

The velocity profile in the steady laminar flow within a tube is always parabolic. 
The velocity profile of an oscillatory flow can be drastically altered by a change in 
the frequency w and the kinematic viscosity v. There the dispersion is governed by 
the two parameters h and y ,  where h2 = wa2/2v and y2 = m z 2 / K ,  which represent the 
number of periods required for vorticit'y and scalar contaminant respectively to 
diffuse over the cross-section. 

A considerable amount of work has been done for oscillating flows without phase 
lag in the flow velocity across the conduit and especially at large times. For example 
Smith (198%~) has shown the sensitivity to time of release of contaminant during a 
cycle and also the importance of the location of a discharge source (Smith 19826) on 
tjhe flow cross-section. Smith (1983) has also given the time evolution ofthe lower-order 
statistical moments of a contaminant cloud and shown these to have a reasonable 
agreement with Allen's (1982) random-walk result for a turbulent, oscillating, 
open-channel flow model. The principal results of this paper are due directly to the 
phase-lag of the velocity a t  different positions on the flow cross-section of a laminar 
flow. The use of these results in the time-dependent turbulent-flow problem where 
the cross-sectional mixing is time-dependent is the subject of a forthcoming paper 
(see Chatwin & Sullivan 1984). Chatwin (1975) has shown that the simple Gaussian 
form for the cross-sectionally integrated streamwise contaminant concentration 
C(x, t )  that was found by Taylor (1953) for a steady flow is retrieved after a sufficiently 
long time in oscillatory flows. However, as in the case of steady flows, the asymptotic 
behaviour develops too slowly to be of much general use, and in this paper a full 
description of the variance growth rate is developed for a complete range of h and 
y for all time. 

The dispersion of con taminant in two specific t.ime-dependent flows is explored. 
The oscillatory flows that result from a sinusoidal pressure difference over the ends 
of a tube (and away from the end regions) and the impulsively started flows, which 
would result from the sudden opening of a valve in a pipeline, for example, are both 
flows that are homogeneous in the streamwise direction. For ease of exposkion a very 
detailed investigation is provided for these time-dependent flows between parallel 
plates, and the corresponding results (which do not change in character) are merely 
stated for the tube geometry. I n  all cases considered, the initial contaminant cloud 
is taken to be a t'hin uniform sheet, of contaminant over the flow cross-section. 

2. General formulation 
The formulation that follows is an extension of that  given in Dewey & Sullivan 

(1982), and takes into account the time dependence of the Eulerian velocity field. 
One is concerned here with flows within arbitrarily shaped but uniform conduits that 
do not change in the streamwise x-direction (see figure 1 ) .  The Lagrangian streamwise 
displacement X(t;y,) of a fluid molecule a t  time t that was released a t  time to a t  a 
position on the cross-section located by the (two-dimensional) vector yo and s = 0 
(i.e. S( t , ;  yo)  = 0) is determined from 

t 

X(t ;y , )  = ~ t o z ~ ( ~ ; y o ) d 7 .  (8 )  
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FIGURE 1. A sketch of the basic geometrical configuration considered in $2. 

where 4 7 ;  yo) is the Lagrangian streamwise component of the molecule’s velocity. 
The second moment of the displacement, following Taylor (1921), when one event 
of the ensemble is the release of a uniform sheet of molecules over the plane 2 = 0, 
is found from 

where A is the cross-sectional area and an overbar is used to denote an ensemble 
average. The Lagrangian molecule velocity w(t;y,) can be expressed in terms of the 
Eulerian flow velocity u(y, t )  as 

- 

v(t;yo) = u( Y(t;y,))+w’, w’ = 0, (4) 

where Y(t;yo) is the Lagrangian cross-stream displacement vector and w’ is the 
random microscopic streamwise velocity fluctuation due to thermal molecular 
activity. The use of (4) in (3) results in 

when the small additive constant K is neglected; which, using the appropriate 
ensemble-average values of (2), provides the growth rate of the cloud variance 

where 

is the average flow velocity. 
With an event in the ensemble - the release of a uniform sheet of contaminant 

molecules over the uniform conduit cross-section - the distribution of contaminant 
over the cross-section remains uniform for all time. For every path that takes a 
molecule from y o  a t  to to y at t there will be one identical path in the ensemble that 

3 E L M  142 



60 C. Jimenez and P. J .  Sullivan 

takes a molecule from y a t  to to yo  a t  t. The correlation integral in (6) can be rewritten 
in terms of equivalent paths of Y(t ;yo)  as 

nt 

I n  (8) u( Y(to;yo) ,  t )  is deterministic with respect to the ensemble average, and the 
mean-velocity history u( Y(t + to - 7 ; y o ) ,  7) is found from 

aP - = vzp, 
at 

and where V2 is the two-dimensional Laplacian operator, n is the normal to the 
conduit boundary r, and yo and zo are the components of the position vector yo .  Thus 
the growth rate of the streamwise variance is determined from the probability 
p ( y ,  t ; y o )  dA(y) that a fluid molecule released at yo at time to will be within an area 
element dA centred on y a t  time t and from the Eulerian velocity profile u(y, t )  as 

- U ( t ) J  U(7)d7. (13) 

The longitudinal dispersivity + da2/dt could also have been calculated using the 
method put forward by Aris (1956) in a somewhat less-straightforward and 
less-physical manner, and the two methods are shown to give the same result in 
Appendix A. Quite apart from the current subject of interest, the same basic approach 
as presented here can be used to formulate the time-dependent turbulent flow 
problem using approximations like those given in Dewey & Sullivan (1979). Two 
critical conditions that were necessary in the foregoing analysis were that the initial 
contaminant cloud be uniformly distributed over the flow cross-section and that the 
flow be homogeneous in the streamwise direction. I n  what follows, two specific flows 
that can be made to meet these conditions, oscillatory flows and impulsively started 
flows, are analysed in detail. 

t o  

3. Oscillatory flows 

latory flow between two parallel plates located a t  y’ = f a ‘  that satisfies 
The steady-state streamwise velocity profile u’(y’, t’) of the incompressible, oscil- 

subject to  u’( f u ,  t’) = 0 (15) 
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(a )  
Case h = 0.1 

FIQURE 2(a) .  For caption see p. 63. 

can be readily confirmed to be 

3-2 

and the variables have been non-dimensionalized as u = wu'/G, x = w2x'/G, 
y = y ' /a ,  t = wt' and also h2 = wa2/2v.  
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(b ) 
Case h = 'p 

FIGURE 2 ( b ) .  For caption see facing page. 

It is of interest to consider the displacement of a line of contaminant placed 
across the flow (i.e. dispersion with K = 0). The time of release to is chosen so that 
contaminant a t  y = 0 oscillates around 2 = 0 with zero phase angle. If g(y ,  t - to )  is the 
displacement of contaminant located a t  y then 

is the displacement, normalized with the y = 0 amplitude, and 

@(A)  + S o ( h ) 2 - C o ( A )  

so(A)  
to = tan-l O 

Figures 2 (a,  b ,  c )  show respectively the displacement profiles of (20) corresponding to 
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the h 4 1 'sloshing-mode', the A = value which is approximately where the largest 
overall amplitude A occurs, and the A B 1 boundary-layer behaviour of (16). It is 
worth noting the large variety of displacement shapes that occur in general, and 
specifically the significant degree of curvature in .if present in figure 2 ( b ) ,  which 
results from the phase difference and which certainly will have a significant effect on 
the dispersion process. 

The dispersion of a contaminant sheet can now, with (13), be written in terms of 
the Eulerian velocity profile (16) and the probability density function p ,  which is 
known from Dewey & Sullivan (1979) for this geometry and non-dimensionalization 
to be 

I 

17 - 
FIGURE 2.  The displacement of a line of contaminant (K = 0) that is embedded in the flow such 
that the mid-plate displacement has zero phase and normalized with the mid-plate displacement 
amplitude. The numbers on the figures correspond to values of K where t = &(k- 1) A. 
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FIGURE 3. A comparison between the simulated (---) and calculated (-) values of the 
non-dimensional variance when h = 2 and y = 3 d2 (see (23)) for the oscillating flow between 
parallel plates. 

Specializing, for ease of exposition, to  the case where to  = 0 in (131, and using ( 2 2 )  
and (16), the growth rate of the non-dimensional streamwise variance d2 is found to  
be (after some manipulation that is recorded in more detail in Jimenez 1982) 

nx 
cos '}{((') B,(A)+s,(A)) sin t 

1 dd(t)2 sin t + S,(h) --_ 
2 dt 1 + (nx/yI4 

+ ((yy #,(A) -.,(A)) cos t + (R,(h) - cy S,(h)) e-(nn/r)zt}, ( 2 3 )  

It is clear from ( 2 3 )  that  the transient effects decay away at tyP2 = t 'Kup2 = O(1) 
and in a way that is consistent with Chatwin (1975). That is in the time taken for 
contaminant molecules to  sample the depth u. Figure 3 shows the variance as 
calculated from ( 2 3 )  when h = 2 and y = 3 v'2,  which are approximately the 
parameters in use in figure 2 (b ) .  A considerably simplified expression for (23) results 
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FIGURE 4. The surface of large-time non-dimensional variance increment Acr2(A, y )  in one cycle 
for the oscillating flow between parallel plates as calculated from (28). 

when one considers t >> y2 and the change in non-dimensional variance that takes 
place in one period 

dr  

The surface Aa2(h, y )  is shown on figure 4. The most prominent feature on the 
surface of figure 4 is a global maximum value of Au2 M 0.1149 when h M 2 and 

To explain the location of the global maximum of Acr2 one needs to construct the 
best circumstances for increasing Au2 in one cycle. Consider the displacement of a 
line of contaminant as shown on figures 2(a-c).  One expects the largest increase in 
variance when K is sufficiently large to diffuse contaminant material uniformly acrQss 
the conduit in one half-cycle (or actually just short of this, to give weight to  having 
the largest values of contaminant concentration as far removed from x = 0 as 
possible) that  is y = O(1) .  The lower the value of K that will provide this type of 
distribution, the higher will be the values of concentration at large x at the end of 
a cycle, and hence the largest values of Aa2.  One notices, because of the large 
curvature of the contaminant line on the return cycle in figure 2 ( b ) ,  that a smaller 
value of K (i.e. larger y )  will effect the same degree of cross-stream mixing on the return 
cycle as those profiles in figure 2 ( a ) ,  and thus leave a residue of larger contaminant 
concentration values a t  large x. Another way of stating this is that for the self-similar 
profiles shown in figure 2 ( a )  contaminant that diffuses away from the line of 
contaminant in the first quarter-cycle has a tendency to diffuse back toward the line 
on the return stroke. I n  terms of a typical molecule’s velocity for these self-similar 
profiles, a molecule that wanders into a region of the flow that has a velocity in defect 
of the mean-flow velocity on the outgoing stroke will likely be in a region of the flow 
where the velocity is in excess of the mean-flow velocity on the return stroke (see 
(13 ) )  and thereby minimize the contribution to Av2. The phase differences that are 
shown in figure 2 ( b )  make i t  possible for a typical molecule to sample relatively large 
velocity variations with a small value of K. One also notices that the global maximum 
of A a 2  occurs approximately a t  a value of h = y ,  which provides the overall 
maximum value of velocity as well as the large phase changes that are shown on 
figure 2 ( b ) .  

y 25 2n. 
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In  the sequence of figures 5 (a ,  b )  and 7 (a ,  b )  the contaminant molecule distribution 
on the flow cross-section that was found using a numerical simulation are shown for 
the two interesting cases of the optimal conditions for dispersion and of the 
boundary-layer-type behaviour. This simulation is the result of a computer program 
that follows individual Contaminant molecules as these do a random walk over the 
flow cross-section and is described in Appendix B. 

In  figure 5 ( a ) ,  corresponding to the optimal A g 2 ,  i t  is clear in the outgoing stroke 
( t  < 2.25) that there is little cross-sectional mixing and that very high values of 
contaminant concentration are retained near y = 0. On the return stroke, and almost 
immediately (2.25 < t < 3.6), contaminant is rapidly spread over the cross-section 
leaving a considerable residue at the end of the half-cycle over a considerable distance 
in x.  The stroke is completed with the central (y - 0) region of the flow following the 
(y - 1 )  wall region in the negative direction and ultimately returning to the start 
position ( t  - 5), where contaminant molecules are in a reasonably uniform distribution 
over the (x - 0) cross-section. Figure 6 (a ,  b)  shows the %-distribution of molecules 
(that is, the sum of the values shown in figure 5 over the y-direction). The effect of 
phase change and low K is apparent here by the large peak value that exists at the 
end of the first quarter stroke. As the reverse flow occurs, the high levels of 
contaminant near the central core region and proceeding in a negative direction is 
diffused into the wall regions, which are out of phase with the central core and going 
in the opposite direction so that the high peak values can be traced throughout the 
entire cycle. 

It is also interesting to observe the boundary-layer effect as shown in figures 7 (a ,  6 ) .  
There, a central core (y - 0) of high contaminant-concentration values persist 
throughout the entire half-cycle, and the dispersion is taking place, in the main, by 
virtue of the small fraction of contaminant located in the wall layer. The integrated 
values shown on figure 8 show a high peak value that represents the core contaminant, 
and this remains well defined throughout the entire cycle. 

Flows with h and y of order unity can readily be achieved in gases. For example, 
with air ( v  = 0.144 cm2/s, K = 0.219 cm2/s a separation of a few centimetres leads to 
w - 1 rad/s. In  liquids this is somewhat less common because of the high (lo3) value 
of the Schmidt number. However, for example, with water ( v  = 0.01 cm2/s, 
K = 1.3 x lop5 cm2/s for a saline solution) values of a few centimetres and a 2 h cycle 
for w provide values of y rz 9 and h rz 0.2. 

The oscillatory flow within a tube that satisfies 

and u’(a, t )  = 0 (0 e r’ e a )  (30) 

has been discussed a t  length in Schlicting (1960). 
The solution to (29) can be written as a Fourier-Bessel expansion 

where y n  is the nth root of Jo(qn)  = 0, and r = r’/a. 

the solution of 
The probability density function p ( r ,  t ; yo )  corresponding to (lo)-( 12) is found from 
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FIGURE 5. A numerical simulation of the evolution of a pulse of contaminant between parallel plates 
with an oscillating flow for which A = 2 and y = 3 .\/ 2.  A single integer is used to indicate the number 
of contaminant molecules within discrete area elements on the interval x+0.96n. 1 indicates 
between 4 and 9 molecules, 2 indicates between 10 and 14 molecules, etc. An asterisk shows an 
offscale value (this is never greater than 81 molecules). 
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FIGURE 6 ( a ) .  For caption see facing page. 

= O  on r = a ,  2 
ar 

The use of (35) and (31) in (13) results in the longitudinal dispersivity 

(35) 
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FIQURE 6. A summation over the depth of the simulated location of molecules displayed in 
figure 5 on the interval x& 1 . 9 6 ~  and expressed as a percentage. 

which is observed to degenerate, following a long period of time from release a t  t = 0, - 
to the form 1 d82 --- A,+A,sin2t+A,cos2t, 

2 dt (37) 

where the constants A,, A ,  and A,  depend on h and y ,  as found by Chatwin (1975). 
One expects (36) to  produce, in essence, the same type of surface shown in figure 4 
for the parallel-plate geometry. 

4. Impulsively started flows 
Dispersion in impulsively started flows more closely resembles the dispersion 

described by Taylor (1953) than in oscillatory flows. One can here assess the 
contribution that is made to streamwise dispersion by the adjustments of the 
mean-stream-velocity profile in reaching its steady-state value. 

For the parallel-plate geometry outlined in $2 the solution of 

with 

and 

u’(fa , t ’ )=O ( - a < y ’ < a )  (39) 

(40) 
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FIGURE 7 .  A numerical simulation of the evolution of a pulse of contaminant between parallel plates 
with an oscillating flow for which h = 20 and y = 2 4 2 .  The information is presented as in figure 
5, and here a cross represents an offscale value. 
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FIGURE 9. The evolution of dispersivity in impulsively started flow at various 
values of Schmidt number as given by (42). 

(odd) 

where the variables are non-dimensionalized as y = y'/a, t = t 'u /a2,  x = (u2/Ga4) F' 
and u = (v/u2G) u'. The summation in (41) represents the departure from the steady 
parabolic velocity profile of plane Poiseuille flow and reduces to zero a t  t $ 1.  For 
t 4 1 the central (y - 0 )  part of u is relatively flat as the momentum boundary-layer 
grows across the conduit from y = 1 .  The longitudinal dispersivity can be constructed 
from ( 4 l ) ,  (22 )  and (13),  and is 

1 da(t)2 2a2 1 -e-(mnla)'t 

m6 x --=- 
2 dt n6 m=-l 

~ 6 ~ 2  a, m (1  _e-(ma/a)2t)e-(2nn)2t e-(+nn)2t - e-(mn/u)2t +-z z - 
7cs m--l n=l 

(odd) 
(n2 - 4m2)n2m4 (m2 - n V )  (p2 - 4m2) m2p2 

t 
e-((mn/a)2+($n)2)t [ e-(($Pn)z-(mn/a)2)~ dT 

011 00 00 
J O  

(pz - 4m2) (n2 - 4m2) n2p2 > 
n,p=l  m = i  
(odd) 

where a2 = v / K  is the Schmidt number (see figure 9). The first term on the right-hand 
side of (42) is the longitudinal dispersivity for plane Poiseuille flow given in Dewey 
& Sullivan (1979), and the remaining terms provide the contribution made by the 
adjustment of the velocity profile to its asymptotic parabolic shape. The effect of these 
remaining terms in (42) can be seen always to reduce the dispersivity that would be 
achieved in plane Poiseuille flow. That is, if the velocity is decomposed into a steady 
(plane Poiseuille) us and transient uT component as 

(43 ) u = U,+UT 
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then the longitudinal dispersivity from (13)  is 
t 

t o  

--=-jo ldd2 1 ~ - ~ ~ - l u S ( y ) u S ( y ~ ) ~ ( y , t - 7 ; y ~ ) d y o d y d 7 - U ( t ) ~  U(7)d7 
2 dt 2 

+ij: JIl I‘ u(y ,  t ,  u ~ ( y o ,  7 ) P ( y ,  t - 7 ;  yo) dyd7 

+ s: sI f uT(!!o, t, p ( y ,  -7  ; YO) d y ~  dy d7 (44)  

(where in (44)  p and U ( t )  are suitably non-dimensionalized) and since u > 0 and uT < 0 
for t > 0 and - 1  < y < 1 the last two terms in (44)  are negative. Hence the 
contribution of the impulsive start to plane Poiseuille flow is to reduce the 
longitudinal dispersivity. This is certainly evident on physical grounds (see ( 1 3 ) ) ,  since 
a t  no time in the development of u ( y ,  t )  is there as much departure from U ( t )  as when 
the flow is fully developed. 

The ratio R(t, a )  between the longitudinal dispersivity of an  impulsively started 
flow to that in plane Poiseuille flow (i.e. the right-hand side of (42)  divided by the 
first term on the right-hand side of ( 4 2 ) )  is always less than or equal to unity. At t - 0, 
both from the observation from (41)  that  u - t and also from an expansion of the 
exponential terms in (42) ,  one observes that 

and the ratio is independent of a. When t >> 1 and t /u2 9 1 

as expected, and 

R(t ,a)  N 1 
1dd2 2a2 
2 dt 945 

- -- -~ 

(46)  

(47)  

In  order to achieve the constant value given in (47)  it is necessary that t / a 2  >> 1 ,  
which, since a2 is O( l o 3 )  in liquids, could be a very significant period of time and hence 
result in a very considerable contribution to dispersion from the impulsive start given 
to plane Poiseuille flow. Also, iSu - 0 and t = 0(1), 

9 6  00 00 

Figure 10 shows the behaviour of R(t ,  a )  that is calculated from (42)  and illustrates 
the consequences of ( 4 5 ) ,  (46)  and (48) .  

The equivalent result to (42)  can be established for the tube geometry. When u, 
the solution to 

0 6 r‘ 6 a ,  u’(a,  t ’ )  = 0, (50)  

which in the non-dimensional variables u = (v /a2G)u’ ,  x = v2x’/Ga4, r = r ’ /a ,  
t = t’v/a2 is 

is used with (35) in the basic expression (13) ,  the longitudinal dispersivity in an 
impulsively started flow in a tube becomes 
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i 

l- 0.1 * 
FIGURE 10. The evolution of the ratio of the variance growth rate in an  impulsively started 

flow to tha t  in plane Poiseuille flow R(t,  a) for various values of the Schmidt number a. 

The basic characteristics for the tube geometry are expected to be very similar to 
those of the parallel-plate geometry. 

The authors wish to  acknowledge the financial support of the Natural Sciences and 
Engineering Research Council of Canada. 

Appendix A 

centration distribution along an axial line within a conduit, 
Aris (1956) demonstrated a method whereby the moments of contaminant con- 

could be determined; and hence, in principle, with all of these moments the full 
contaminant conc~entration C ( x ,  t )  could be compiled. I n  this specific comparison we 
take P 

and define 
J C(x,t)dV(x) = 1 

r P 

Mci) ( t )  = J xiC(x, t )  d V(X) = 
V J, c(')(y, t )  dA(y). (A 3) 

Multiplication of each term in the convective-diffusion equation by xi and integration 
over x results in aC(o 

(A 4) ~ - - iuc(t-l) + / p c ( i )  +i(i- 1) K c ( i - 2 )  

at 
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with - = 0 on r, the conduit boundary, (A 5 )  

and c'i)(y, 0) = c p ,  (A 6)  

75 

an 

where V2 is the two-dimensional Laplace operator and di )  = 0 for negative values of 
i. Integration of (A 4) over the conduit cross-section results in 

(A 7 )  

(A 8) J$i) (0) = MCi', 
0 

s d 
- M(') = i 
dt 

U ( Y ,  t )  d - l )  dA(y) + i(i- 1 )  KM-') 

and 

With (A 4)-(A 8) all of the moments can be solved in terms of lower ordered moments. 
Here one is specifically interested in an initial distribution of C(x, t )  that  is a thin 
uniform sheet over the conduit cross-section and the variance growth rate, which in 
this notation is derived from 

that is, using (A 7)  with i = 2. One observes that with a uniform initial distribution 
within a uniform flow 

(A 10) 
1 00 

do)@, t )  = C(X, t )  dx = 2, 
s L  

and hence M(O) = 1 ; and using (A 7) with i = 1 one finds that 

Thus 
-- 1 da2 = ~ A v ( y , f ) l l ( l ) d A ( y ) + K - U ( t )  
2 dt 

To complete the solution for the dispersivity given in (A 12), one requires the solution 
to (A 4)-(A 6) with i = 1 ; that is, 

with ac(l)/an = 0 on the conduit boundary and c(')(y,O) = 0 corresponding to 
C(x, 0) = S ( X ) .  

Using the arguments of $2 one can write 

(A 14) 
l t  

c(l)(y, t ,  = 2s s u(yo, t ) p ( y ,  t - 7 ; Y ~ )  dA(yo) d7, 
O A  

where p(y ,  t ;yo)  is the probability density function obtained from the solution of 
(10)-(12). One now finds that (A 14) is actually the solution of (A 13), and thus the 
longitudinal dispersivity given by (A 12), and using (A 14) is 

t 1da2 1 
2 dt -- - - - A jo d7 j A  dA(y) IA dA(yo) udvo, t )  udv, 7 )  p ( y ,  ; Yo) - u(t) s u(7) d7 + 

(A 15) 

The equation (A 15) is exactly (13) with the additive constant K (which was left out 
in (13)) here included. 
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Appendix B 
A numerical simulation of the diffusion of contaminant in the oscillating flow 

between parallel plates is provided by following the motion of typical contaminant 
molecules as these undergo a random walk on the Eulerian velocity field. The 
displacements a t  the end of one discrete time step At’ are 

t’+At’ 

AX‘ = j t ,  u’(Y’(~))d7&L’, AY’ = fL’, (B 1 )  

where & L’ is the randomly directed cross-stream constant step length. In  principle 
this simple simulation is capable of providing an approximation to C(x,t) for 
arbitrary initial and boundary conditions ; however, the computation time required 
may become prohibitive for complex flows and boundary conditions. 

Some practical considerations in the implementation of the simulation to the 
oscillating flow between parallel plates follow. Non-dimensional variables as given 
in $3  are used. n contaminant molecules are initially spread out over 
1 - 1/2n > y 3 1/2n a t  uniform spacings of l / n  ($ the flow here because of the 
symmetry about y = 0).  When the step size A y  is taken to be a multiple of l / n  each 
molecule will be constrained to occupy one of the n discrete locations on the 
cross-section, and hence the y-position of the molecule can be recorded as an integer 
value. The molecular diffusivity 

K = ‘W’L’, 2 (B 2 )  

where w’ = Ay‘/At’ is the constant component of fluctuating molecular velocity in 
the y-direction, is unity in the non-dimensional variables in use, and 

At = $Ay2, (B 3 )  

The molecules are reflected as they encounter y = 1 and y = 0, and because the 
molecules can only occupy n fixed positions the integral in (B 1 )  can be pretabulated 
(in part at least) as described in more detail in Jimenez (1982). Thus, structured in 
this way, a computer program needs as input information the value of h (which 
determines the flow structure) and the number of molecules n to be used, and the 
result will be an approximation to C(x, t ) .  

Errors occur because of a roundoff error in the addition of the calculated A x  of (B 1 ), 
because of the finite size of Ay,  and because of imperfections in the random-number 
generator. Of these three sources of error the most problematic is that  due to the finite 
size Ay. The value of Ay must be commensurately small with respect to the gradients 
of u(y,  t ) .  To accomplish this, and especially for the boundary-layer-type profiles when 
h $ 1 ,  requires a significant increase in n, which gives a very large decrease in At as 
per (B 4) and leads to a tremendous increase in computation time to cover a complete 
cycle of the oscillating flow. The use of n = 200 results in a reasonably good 
representation with h = 2 and y = 3 1 / 2  where the errors in the mean and variance 
with respect to those calculated with (23) are less than 10 yo when 5 < t < 23. 
However, with n = 400 one expects no more than a reasonable qualitative result for 
the boundary-layer flow of h = 20 and y = 2 1/2 (the error in the mean a t  t - 5 is 
approximately 1 Yo, whereas the error in the variance is approximately 50 yo there). 
The marginal costs in computing time necessary to improve the result by increasing 
n is extremely large. 
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